三种直线段扫描算法

MelodicTechno Lv3

数值微分法

1
2
3
4
5
6
7
8
9
10
11
12
void dDALine(int x0, int y0, int x1, int y1, int color) {
int x;
float dx, dy, y, k;
dx = x1 - x0;
dy = y1 - y0;
k = dy / dx;
y = y0;
for (x = x0; x <= x1; x++) {
drawPixel(x, round(y + 0.5), color);
y = y + k;
}
}

中点画线法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include <iostream>

// 输出像素信息
void drawPixel(int x, int y, int color) {
// Draw a pixel at (x, y) with the specified color
std::cout << "像素坐标:" << '(' << x << ',' << y << ')' << "颜色:" << color << std::endl;
}

// 重点画线算法
void middlePointLine(int x0, int y0, int x1, int y1, int color) {
int a, b, d1, d2, d, x, y;
a = y0 - y1;
b = x1 - x0;
d = 2 * a + b;
std::cout << "判别值:" << d << std::endl;
d1 = 2 * a;
d2 = 2 * (a + b);
x = x0;
y = y0;
drawPixel(x, y, color);
while (x < x1) {
if (d < 0) {
x++;
y++;
d += d2;
}
else {
x++;
d += d1;
}
std::cout << "判别值:" << d << std::endl;
drawPixel(x, y, color);
}
}

void drawLine(int x0, int y0, int x1, int y1, int color) {
std::cout << "画线,起点:" << '(' << x0 << ',' << y0 << ')' << "终点:" << '(' << x1 << ',' << y1 << ')' << "颜色:" << color << std::endl;
middlePointLine(x0, y0, x1, y1, color);
}

int main() {
std::cout << "演示中点画线算法" << std::endl;
drawLine(0, 1, 7, 4, 1);
}

bresenham算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// bresenham算法
void bresenhamLine(int x0, int y0, int x1, int y1, int color) {
int x, y, dx, dy, e;
dx = x1 - x0;
dy = y1 - y0;
e = -dx;
x = x0;
y = y0;
for (int i = 0; i <= dx; i++) {
drawPixel(x, y, color);
x++;
e = e + 2 * dy;
if (e >= 0) {
y++;
e = e - 2 * dx;
}
}
}

效率比较

把三个算法做成header files only的library:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#pragma once
#include <cmath>
#include <iostream>

void drawPixel(int x, int y, int color) {
// 画点
//std::cout << "像素点坐标:" << '(' << x << ',' << y << ')' << " 颜色:" << color << std::endl;
}

// 算法
void dDALine(int x0, int y0, int x1, int y1, int color) {
int x;
float dx, dy, y, k;
dx = x1 - x0;
dy = y1 - y0;
k = dy / dx;
y = y0;
for (x = x0; x <= x1; x++) {
drawPixel(x, round(y + 0.5), color);
y = y + k;
}
}

void middlePointLine(int x0, int y0, int x1, int y1, int color) {
int a, b, d1, d2, d, x, y;
a = y0 - y1;
b = x1 - x0;
d = 2 * a + b;
d1 = 2 * a;
d2 = 2 * (a + b);
x = x0;
y = y0;
drawPixel(x, y, color);
while (x < x1) {
if (d < 0) {
x++;
y++;
d += d2;
}
else {
x++;
d += d1;
}
drawPixel(x, y, color);
}
}

// bresenham算法
void bresenhamLine(int x0, int y0, int x1, int y1, int color) {
int x, y, dx, dy, e;
dx = x1 - x0;
dy = y1 - y0;
e = -dx;
x = x0;
y = y0;
for (int i = 0; i <= dx; i++) {
drawPixel(x, y, color);
x++;
e = e + 2 * dy;
if (e >= 0) {
y++;
e = e - 2 * dx;
}
}
}

然后测试:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#include "CGLine.h"
#include <chrono>
#include <cstdlib>
#include <ctime>

int main() {
// 设置随机种子
std::srand(std::time(0));

// 测试次数
const int numTests = 1000;
int x0, y0, x1, y1;
int color = 1; // 颜色可以是一个常量,实际使用时可能是RGB等

// 用于计时的变量
std::chrono::high_resolution_clock::time_point start, end;
std::chrono::duration<double> duration;

// 测试DDA算法
start = std::chrono::high_resolution_clock::now();
for (int i = 0; i < numTests; ++i) {
x0 = std::rand() % 1000;
y0 = std::rand() % 1000;
x1 = std::rand() % 1000;
y1 = std::rand() % 1000;
dDALine(x0, y0, x1, y1, color);
}
end = std::chrono::high_resolution_clock::now();
duration = std::chrono::duration_cast<std::chrono::duration<double>>(end - start);
std::cout << "DDA算法运行时间: " << duration.count() << "秒\n";

// 测试中点算法
start = std::chrono::high_resolution_clock::now();
for (int i = 0; i < numTests; ++i) {
x0 = std::rand() % 1000;
y0 = std::rand() % 1000;
x1 = std::rand() % 1000;
y1 = std::rand() % 1000;
middlePointLine(x0, y0, x1, y1, color);
}
end = std::chrono::high_resolution_clock::now();
duration = std::chrono::duration_cast<std::chrono::duration<double>>(end - start);
std::cout << "中点算法运行时间: " << duration.count() << "秒\n";

// 测试Bresenham算法
start = std::chrono::high_resolution_clock::now();
for (int i = 0; i < numTests; ++i) {
x0 = std::rand() % 1000;
y0 = std::rand() % 1000;
x1 = std::rand() % 1000;
y1 = std::rand() % 1000;
bresenhamLine(x0, y0, x1, y1, color);
}
end = std::chrono::high_resolution_clock::now();
duration = std::chrono::duration_cast<std::chrono::duration<double>>(end - start);
std::cout << "Bresenham算法运行时间: " << duration.count() << "秒\n";

return 0;
}

结果:

1
2
3
DDA算法运行时间: 0.0060831秒
中点算法运行时间: 0.0004176秒
Bresenham算法运行时间: 0.0004899秒

我估计是因为:
DDA算法中,y与k必须用浮点数表示,而且每一步都要对y进行四舍五入后取整,故效率最差。
中点画线法合bresenham算法的时间复杂度相同,而且都可以摆脱浮点运算,但bresenham算法的乘法运算比中点画线法少,故bresenham的运行效率更高。

  • 标题: 三种直线段扫描算法
  • 作者: MelodicTechno
  • 创建于 : 2025-01-08 21:54:03
  • 更新于 : 2025-03-09 10:23:26
  • 链接: https://melodictechno.github.io./2025/01/08/cgline/
  • 版权声明: 本文章采用 CC BY-NC-SA 4.0 进行许可。
评论